Global orthogonality implies local almost-orthogonality
نویسندگان
چکیده
منابع مشابه
Global Orthogonality Implies Local Almost-orthogonality
We introduce a new stopping-time argument, adapted to handle linear sums of noncompactly-supported functions that satisfy fairly weak decay, smoothness, and cancellation conditions. We use the argument to obtain a new Littlewood-Paley-type result for such sums. 0. Introduction. First, an apology. The title, though correct, is somewhat misleading. It should be “Global almostorthogonality implies...
متن کاملCotlar-Stein Almost Orthogonality Lemma
When deriving the estimates on integral operators one often uses the Almost Orthogonality principle of M. Cotlar and E.M. Stein, first proved by M. Cotlar in [Cot55]. This result is classical; our excuse for formulating it once again is a need to have its weighted form which sometimes allows to reduce the number of integrations by parts in half (hereby weakening smoothness requirements), and al...
متن کاملOn Approximate Birkhoff-James Orthogonality and Approximate $ast$-orthogonality in $C^ast$-algebras
We offer a new definition of $varepsilon$-orthogonality in normed spaces, and we try to explain some properties of which. Also we introduce some types of $varepsilon$-orthogonality in an arbitrary $C^ast$-algebra $mathcal{A}$, as a Hilbert $C^ast$-module over itself, and investigate some of its properties in such spaces. We state some results relating range-kernel orthogonality in $C^*$-algebras.
متن کاملUniform Normalisation beyond Orthogonality
A rewrite system is called uniformly normalising if all its steps are perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one too. For such systems termination (SN) is equivalent to normalisation (WN). A well-known fact is uniform normalisation of orthogonal non-erasing term rewrite systems, e.g. the λI-calculus. In the present paper both restrictions are analysed...
متن کاملOrthogonality of Zernike Polynomials
Zernike polynomials are an orthogonal set over a unit circle and are often used to represent surface distortions from FEA analyses. There are several reasons why these coefficients may lose their orthogonality in an FEA analysis. The effects, their importance, and techniques for identifying and improving orthogonality are discussed. Alternative representations are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Iberoamericana
سال: 2000
ISSN: 0213-2230
DOI: 10.4171/rmi/270